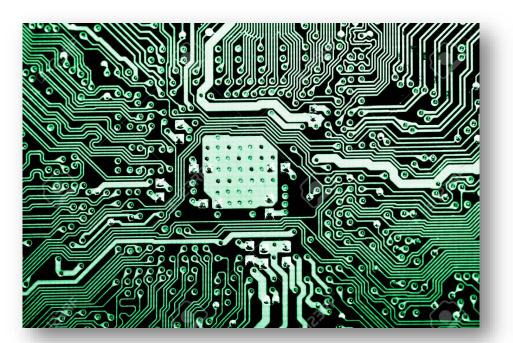
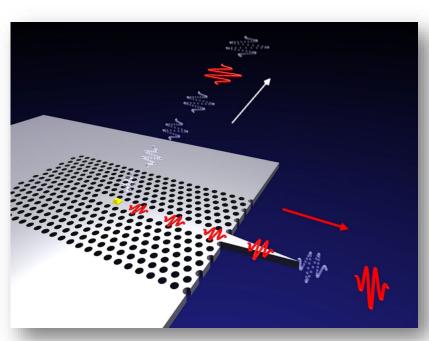
WORKSHOP Quantum technologies in Spain The future is now MADRID 08 MAY MAS INFO

Avances y Perspectivas en Polaritonica Cuántica con Semiconductores

Guillermo Muñoz Matutano

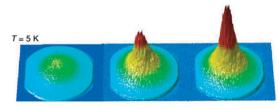




Desarrollo de las Tecnologías Cuánticas

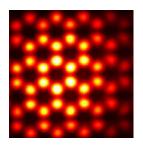
Electrónica

Fotónica

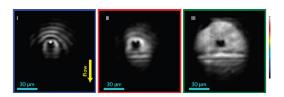

¿Interacción Fotón – Fotón?

Polaritones: $|P\rangle = |Material\rangle + |Fotón\rangle$

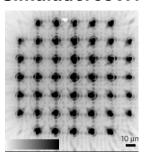
Fluidos cuánticos de Luz


I. Carusotto & C. Ciuti Rev. Mod. Phys. 85, 299 (2013)

Condensados Bose-Einstein


Kasprzak et al *Nature 443*, 409 (2006)

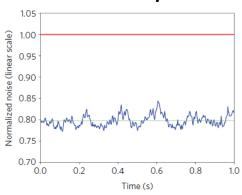
Conos de Dirac


J. Jacqmin et al *Phys Rev Lett* 112, 116402 (2014)

Superfluidez

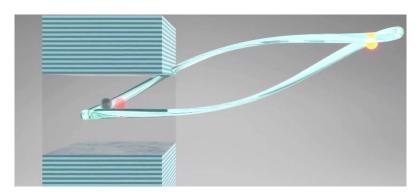
Amo et al *Nat. Phys* 5, 805 (2006)

Simuladores XY

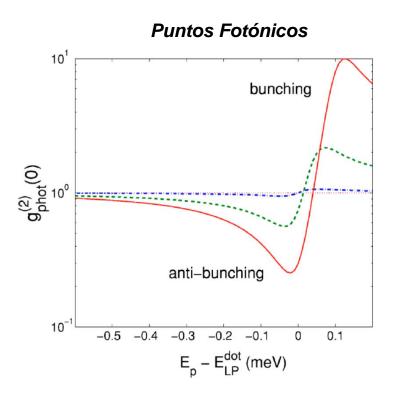


N.G. Berloff et al *Nat. Materials* 16, 1120 (2017)

¿Sistemas puramente cuánticos?

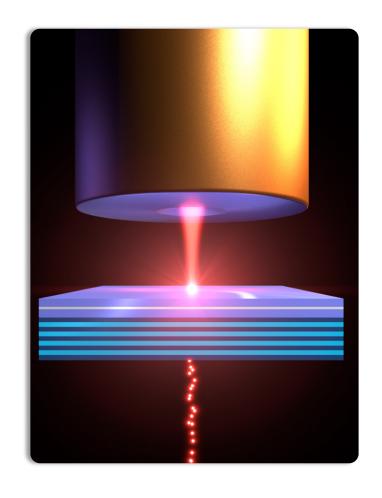

Polaritónica cuántica: avances significativos.

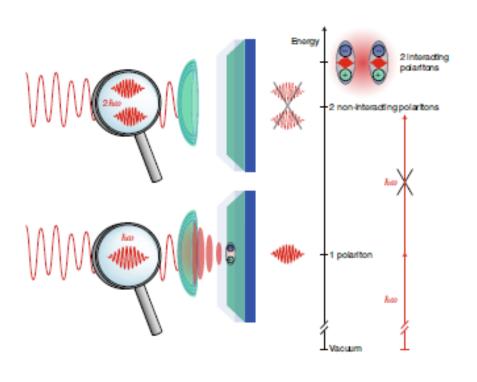
Estados comprimidos



T. Boulier *et al.* "Polariton-generated intensity squeezing in semiconductor micropillars". **Nature Commun.** 5, 3260 (2014)

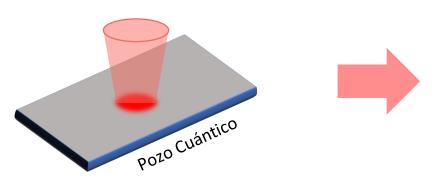
Intercambio de estado entrelazado Polaritón - Fotón

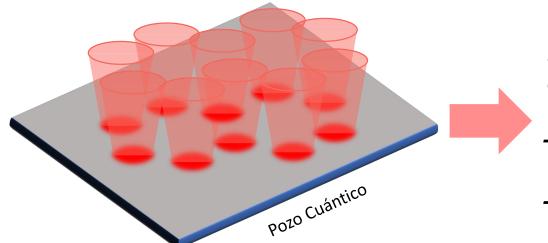



A. Cuevas et al "First observation of the quantized exciton-polaritonfield and effect of interactions on a single polariton" **Sci. Adv.** 4, eaao6814 (2018)

A. Verger et al "Polariton quantum blockade in a photonic dot", *Phys Rev B* 73, 193306 (2006)

Bloqueo de Polaritones: Hacia los Puntos Fotónicos.




G. Muñoz-Matutano *et al* "Emergence of quantum correlations from interacting fibre-cavity polaritons", *Nature Materials* 18, 213 (2019) [Semiconductores]

A. Delteil *at al* "Towards polariton blockade of confined exciton—polaritons". *Nature Materials* 18, 219 (2019) [Semiconductores]

Posibles aplicaciones futuras:

- Emisores de fotones uno a uno (THz)
- Escalabilidad y Homogeneidad.
- Puertas lógicas cuánticas.
- Selectores de estados de Fock.

- Bloqueo de Polaritones no convencional.
- Simuladores cuánticos con luz.
- Nuevos estados cuánticos topológicos.

Equipo Internacional:

Sydney (Australia)

Guillermo Muñoz Matutano
Andrew Wood
Mattias Johnson
Xavier Vidal
Ben Baragiola
Thomas Volz

Grenoble (France)

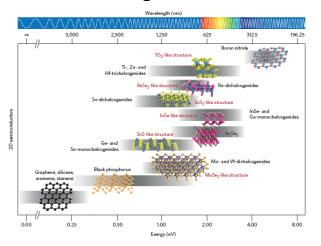
Gilles Nogues Benjamin Besga Maxime Richard

Paris (France)

Aristide Leimatre Jacqueline Bloch Alberto Amo

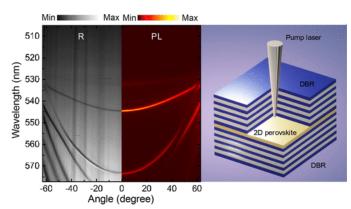
Futuro próximo:

Proyecto Nacional para los próximos 3 años

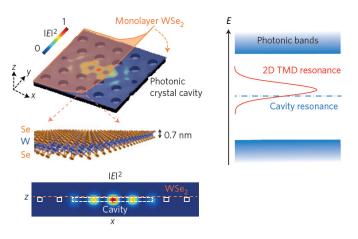


"Puntos Fotónicos con Semiconductores Bidimensionales (2D-SPD)"

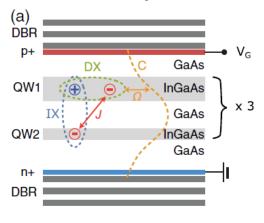
Gracias por vuestra atención ¡¡


Nuevos materiales y estrategias alternativas:

Dicalcogenidos 2D


A. Castellanos-Gomez Nat. Phot. 10, 202 (2016)

Perovskitas 2D


J. Wang et al ACS Nano 12, 8382 (2018)

Materiales 2D + Cavidades Fotónicas

S. Wu et al Nature 520, 69 (2015)

Polaritones Dipolares

E. Togan et al Phys Rev Lett 121, 227402 (2018)